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Abstract
Through variational Monte Carlo calculations on Gutzwiller projected
wavefunctions, we study the quasiparticle weight for adding and removing an
electron from a high-temperature superconductor. We find that the quasiparticle
weight is particle–hole symmetric at sufficiently low energy. We propose to
use the tunnelling asymmetry as a tool to study the mechanism of electron
incoherence in high-temperature superconductors.

1. Introduction

Scanning tunnelling microscopy (STM) plays an important role in the study of high-
temperature superconductors as it provides local information on the single-particle properties
with very high energy resolution. A striking feature in the STM spectra of high-temperature
superconductors is the remarkable particle–hole asymmetry. The hole side of the spectrum
always dominates the particle side of the spectrum in hole-doped cuprates [1].

This asymmetry is not at all surprising if we take the high-temperature superconductors as
doped Mott insulators described by, for example, the t–J model. In such doped Mott insulators,
an added electron has a reduced probability of contributing to the electron spectral weight in
the low-energy subspace of no double occupancy. More specifically, if the hole density in the
system is x , then the total spectral weight in the particle side of the spectrum is reduced to
x by the no double occupancy constraint, while that in the hole side of the spectrum remains
unaffected. Thus the total spectral weight is particle–hole asymmetric for small x . However,
such asymmetry the total spectral weight tells us nothing about the distribution of the spectral
weight in energy. To address the problem of tunnelling asymmetry in the near vicinity of the
chemical potential, we need more detailed information on the low-energy excitations of the
system.

Rantner and Wen addressed this issue in the slave–boson mean field theory (SBMFT) of the
t–J model [2]. In their theory, the tunnelling asymmetry is attributed to the incoherent part of
the electron spectrum, which is predicted to dominate the hole side of the electron spectrum and
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to be absent in the particle side of the electron spectrum. In the slave–boson mean-field theory,
an electron is split into two parts, the fermionic spinon part that carries spin and the bosonic
holon part that carries charge. The superconducting state is described by the Bose condensation
of the holon in the background of Bardeen–Cooper–Schrieffer (BCS) pairing of the spinons.
In the presence of the holon condensate, the electron spectrum develops a quasiparticle peak.
According to the mean-field theory, the particle side of the electron spectrum is exhausted by
the quasiparticle contribution, since the holon removed during the particle injection process
must come from the holon condensate, while the hole side of the electron spectrum contains
contributions from both the quasiparticle peak and the incoherent background, since the holon
injected into the system during the particle-removing process can stay either in or out of the
holon condensate. The slave–boson mean-field theory predicts that the quasiparticle weight
will be reduced from the BCS mean-field value by a constant factor x and remains particle–
hole symmetric. Thus the hole side of the electron spectrum is dominated by the incoherent
background at small x and the majority of the tunnelling asymmetry should be attributed to the
incoherent spectral weight.

Recently, Anderson and Ong addressed the same issue with a variational approach [3]
but arrived at a quite different conclusion. They constructed the Gutzwiller-type variational
wavefunctions for the ground state and the quasiparticle excitations of the t–J model and
then treated the projection with an analytical approximation. Their theory predicted that
both the particle side and the hole side of the electron spectrum are dominated by the
quasiparticle contribution, which is itself particle–hole asymmetric. Thus the tunnelling
asymmetry should be attributed to the coherent part rather than the incoherent part of the
electron spectrum. According to their theory, for excitation energy much larger than the pairing
gap, the quasiparticle weight for adding an electron into the system is a factor 2x

1+x smaller than
the quasiparticle weight for removing an electron. Thus, for a system with no superconducting
pairing, there will be a jump in the quasiparticle weight at the Fermi surface. At the same time,
the theory predicted a non-zero quasiparticle weight for removing an electron from a half-filled
system.

The problems of tunnelling asymmetry and the quasiparticle weight are also recently
addressed in some other variational studies [4–7]. For example, it is proved by Yunoki that
the particle side of the electron spectrum is exhausted by the quasiparticle contribution for a
superconductor described by the Gutzwiller projected BCS wavefunction [5]. However, a clear
understanding of the hole-like quasiparticle excitation of the Gutzwiller projected state is still
absent.

In this paper, we conduct variational Monte Carlo (VMC) calculations on the Gutzwiller
projected wavefunctions and find that the quasiparticle weight in the t–J model is particle–hole
symmetric at sufficiently low energy, even with no superconducting pairing. Especially, we find
the quasiparticle weights for adding or removing an electron on the Fermi surface both converge
to the value derived from the jump of the momentum distribution function on the Fermi surface,
a result consistent with the Landau Fermi liquid theory. We also find the quasiparticle weights
for adding or removing an electron vanish at half-filling, as predicted by the slave–boson mean-
field theory. However, we do find that the quasiparticle weights calculated from the Gutzwiller
projected wavefunction show modest particle–hole asymmetry at finite excitation energy, which
becomes more evident near half-filling. Our calculation shows that the tunnelling asymmetry
near the chemical potential should be attributed to the incoherent part of the electron spectrum.
We propose to use the tunnelling asymmetry to study the mechanism of electron incoherence
in the high-temperature superconductors.

In the Landau theory of a Fermi liquid, a quasiparticle plays a dual role. When exactly
on the Fermi surface, a quasiparticle can be viewed either as a particle-like (or hole-like)
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elementary excitation on the ground state of an N-particle system, or a constituent particle
(or hole) of the ground state of an N + 1 (N − 1)-particle system. Thus, the quasiparticle
weight for adding an electron into the system on the Fermi surface is equal to the square of
the matrix element of the electron creation operator between the ground state of an N-particle
system and the ground state of an N + 1-particle system:

Z+
N = |〈gN+1|c†

k |gN 〉|2,
while the quasiparticle weight for removing an electron from the system on the Fermi surface is
equal to the square of the matrix element of electron annihilation operator between the ground
state of an N-particle system and the ground state of an N − 1-particle system:

Z−
N = |〈gN−1|ck |gN 〉|2 = Z+

N−1.

In the thermodynamic limit, we have

Z−
N = Z+

N−1 � Z+
N .

Thus the quasiparticle weight should be particle–hole symmetric on the Fermi surface. This
simple argument does not apply to the superconducting state. However, we do not expect the
superconducting pairing to change the conclusion since the superconducting pairing is expected
to enhance rather than reduce the particle–hole symmetry.

2. The Gutzwiller wavefunctions for the quasiparticles

Now we calculate the quasiparticle weight from the Gutzwiller projected wavefunctions. Such
a variational description is widely used in the study of the t–J model and is believed to be
able to capture the low-energy physics of the cuprate superconductors quite well [8–11]. The
variational ground state, namely the Gutzwiller projected BCS state with N particles, is given
by (we follow the notations used in [5])

|�N
0 〉 = PN PG |BCS〉, (1)

where PN is the projection operator into the subspace of N electrons, and PG = ∏
i (1−ni↑ni↓)

is the projection operator into the subspace of no double occupancy. |BCS〉 denotes the
unprojected BCS mean-field ground state. The quasiparticle excitations above the variational
ground state can be similarly constructed by Gutzwiller projection of BCS mean-field excited
states. For example, a particle-like quasiparticle with momentum k and spin σ can be
constructed as follows:

|�N+1
k,σ 〉 = PN+1 PGγ

†
k,σ |BCS〉, (2)

where PN+1 is the projection operator into the subspace of N + 1 electrons and γ †
k,σ is the

creation operator for a Bogliubov quasiparticle on the BCS mean-field ground state. γ †
k,σ is

related to the original electron operator c†
k,σ through the Bogliubov transformation:

(
γk,↑
γ

†
−k,↓

)

=
(

uk −vk

vk uk

) (
ck,↑

c†
−k,↓

)

, (3)

in which uk =
√

1 + ξk

Ek
, vk =

√
1 − ξk

Ek
. Here ξk denotes the bare dispersion and

Ek =
√
ξ 2

k +�2
k denotes the energy of the Bogliubov quasiparticle. Similarly, a hole-like

quasiparticle with momentum k and spin σ can be constructed as follows:

|�N−1
k,σ 〉 = PN−1 PGγ

†
k,σ |BCS〉, (4)
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where PN−1 is the projection operator into the subspace of N − 1 electrons. The quasiparticle
weight for adding an electron is given by the overlap between the bare electronic state, namely
c†

k,σ |�N
0 〉, and the quasiparticle state |�N+1

k,σ 〉, with proper normalization factor added:

Z+
k = |〈�N+1

k,σ |c†
k,σ |�N

0 〉|2
〈�N+1

k,σ |�N+1
k,σ 〉〈�N

0 |�N
0 〉 , (5)

while the quasiparticle weight for removing an electron from the system is given by the overlap
between c−k,−σ |�N

0 〉 and |�N−1
k,σ 〉, with proper normalization factor added:

Z−
k = |〈�N−1

k,σ |c−k,−σ |�N
0 〉|2

〈�N−1
k,σ |�N−1

k,σ 〉〈�N
0 |�N

0 〉 . (6)

As pointed out by Yunoki, using the fact that PGc†
k,σ PG = PGc†

k,σ [3], the quasiparticle
weight for adding an electron with spin σ can be related to the momentum distribution function
nk = 1

2

∑
σ 〈c†

k,σ ck,σ 〉 as follows:

Z+
k = |uk |2

〈�N+1
k,σ |�N+1

k,σ 〉
〈�N

0 |�N
0 〉 = 1 − Nσ̄

L
− nk, (7)

where Nσ̄ denotes the total number of electrons with the opposite spin, and L denotes the
number of lattice sites. Thus to calculate Z+

k , we only need to evaluate a ground-state
expectation value. The calculation of Z−

k is more complex. However, using the identity
PG c†

k,σ PG = PGc†
k,σ and the Bogliubov transformation, we are able to show that

Z−
k = f

|uk(vk − uk Ok)|2
Z̃+

k

, (8)

in which f is momentum independent and is given by

f = 〈�N
0 |�N

0 〉
〈�N−2

0 |�N−2
0 〉 , (9)

and Z̃+
k denotes the quasiparticle weight for adding an electron in the ground state of an N − 2

particle system, namely |�N−2
0 〉. Ok is a overlap integral and is given by

Ok = 〈�N
0 |�N

2k〉
〈�N

0 |�N
0 〉 , (10)

in which

|�N
2k〉 = PN PGγ

†
k,↑γ

†
−k,↓|BCS〉 (11)

denotes a state with a pair of quasiparticles. Now the calculation of Z−
k is reduced to the

calculation of Z̃+
k , Ok , and the constant f . Technically, the calculations of Z̃+

k and Ok are
much easier than the calculation of Z−

k from its defining equation (6). To calculate Z−
k directly

from equation (6), one has to sample |�N−1
k,σ 〉 for each individual momentum k. However, to

calculate Z̃+
k and Ok , one only needs to sample a single wavefunction.

Further simplification is possible when there is no superconducting pairing. In such a case,
one finds

Z+
k = 〈�N+1

k,σ |�N+1
k,σ 〉

〈�N
0 |�N

0 〉 (12)

for k outside the Fermi surface and

Z−
k = 〈�N

0 |�N
0 〉

〈�N−1
k,σ |�N−1

k,σ 〉 (13)
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for k inside the Fermi surface. Noting the fact that |�N+1
k,σ 〉 (|�N−1

k,σ 〉) is nothing but the
variational ground state of the N + 1(N − 1)-particle system for k on the Fermi surface, we
have

Z+
k+

F
= 〈�N+1

0 |�N+1
0 〉

〈�N
0 |�N

0 〉 (14)

and

Z−
k−

F
= 〈�N

0 |�N
0 〉

〈�N−1
0 |�N−1

0 〉 , (15)

where k±
F denotes momentum just above or below the Fermi surface. Thus, if the quasiparticle

weight is a continuous function of particle number, it should be particle–hole symmetric on the
Fermi surface in the thermodynamic limit. Furthermore, using Yunoki’s relation and the fact
that Z+

k vanishes for k inside the Fermi surface, we have

nk = 1 − n

2
(16)

for k inside the Fermi surface and

Z+
k+

F
= �nkF, (17)

where �nkF denotes the jump of nk on the Fermi surface. Thus both Z+
k and Z−

k converge to
�nkF on the Fermi surface in the thermodynamic limit, a result consistent with the standard
Fermi liquid theory.

3. Method

The calculation of the quasiparticle weight is now reduced to the calculation of the quantities

of the form 〈�1|Ô|�2〉
〈�1|�1〉 , where Ô denotes a general physical operator. These quantities can

be calculated easily by the standard variational Monte Carlo method. First, we expand
both |�1〉 and |�2〉 in the Fock basis |α〉 = ∏

iα, jα
c†

iα↑c†
jα↓|0〉, with ψ1α and ψ2α as their

amplitudes. Here iα and jα denote the sets of spatial coordinates of the up-spin electrons and
the down-spin electrons in the given configuration |α〉. For the wavefunctions considered in
this paper, the amplitudes in the Fock basis are Slater determinants of matrices composed of
the eigenfunctions of the single-particle Hamiltonian equations (19) and (20). The quantity to
be calculated is now reduced to

〈�1|Ô|�2〉
〈�1|�1〉 =

∑
α |ψ1α|2

∑
β Oαβψ2β

ψ1α∑
α |ψ1α|2 , (18)

where Oαβ = 〈α|Ô |β〉 denotes the matrix element of Ô in the Fock basis. To calculate the
weighted sum in equation (18), one follows the standard Metropolis procedure to generate a
series of sample configurations |α1〉, . . . , |αM 〉 distributed according to the probability |ψ1α|2.

The quantity to be calculated is then approximated by the average of
∑

β Oαβψ2β

ψ1α
over the M

generated Monte Carlo samples. A more detailed explanation of the method can be found in
the review by Gros [14].

In our calculation, we have used 500 000 samples in each case to estimate the quantity to
be evaluated. Since there is no systematic error in the calculation, the accuracy of the results
can be read off from the smoothness of the curves obtained. To give an absolute measure of the
statistical error in our calculation, we note that the fluctuation in the energy of the t–J model
calculated with the wavefunctions in this paper is less than 10−4t on a 18 × 18 lattice. With
such an accuracy one is able to derive a rather smooth dispersion relation for the quasiparticle.

5
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Figure 1. The quasiparticle weight as calculated from the VMC method for a Gutzwiller projected
Fermi sea state on an 18 × 18 square lattice with 42 holes (x � 0.13). The hole number
is so chosen that the closed shell condition is satisfied for a system with periodic–periodic
boundary condition. The mean-field state is generated by the mean-field Hamiltonian equation (18).
(a) Quasiparticle weight in the (0, 0)–(π, π) (nodal) direction. (b) Quasiparticle weight in the
(0, 0)–(0, π) (antinodal) direction.

4. Results

We now present the results of the VMC calculation. Figure 1 shows the quasiparticle weight
evaluated on a Gutzwiller projected Fermi sea state. The Gutzwiller projected Fermi sea state
is generated by the following mean-field Hamiltonian:

HMF = −
∑

〈i j〉,σ
(c†

iσ c jσ + h.c.)− μ
∑

iσ

c†
iσ ciσ , (19)

in which
∑

〈i j〉 denotes the sum over nearest-neighbouring sites on the square lattice. The
ground state of this Hamiltonian is a Fermi sea state,

|FS〉 =
∏

k<kF

c†
k↑c†

k↓|0〉, (20)

where c†
k↑ is the creation operator of an electron with momentum k and an up spin, kF is the

Fermi momentum determined by the electron filling, and |0〉 denotes the vacuum of an electron.
The Gutzwiller projected Fermi sea state is generated from |FS〉 by removing its components
with doubly occupied sites.

The results are shown for two representative directions in the Brillouin zone: the
(0, 0)–(π, π) direction and the (0, 0)–(π, 0) direction. Below the Fermi surface, the
quasiparticle weight for adding an electron is zero, while above the Fermi surface, the

6
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Figure 2. The momentum distribution function (a) and the total quasiparticle weight (b) of the
Gutzwiller projected Fermi sea state as calculated from the VMC method in the whole Brillouin
zone. The parameters used in the calculation are the same as those of figure 1.

quasiparticle weight for removing an electron is zero. Thus, both Z+
k and Z−

k show a jump
on the Fermi surface. However, we find that the total quasiparticle weight, namely Z+

k + Z−
k ,

is a continuous function of momentum across the Fermi surface. This can be seen more clearly
in figure 2(b), in which the total quasiparticle weight is plotted in the whole Brillouin zone.
The continuity of the total quasiparticle weight implies that the quasiparticle weight should be
particle–hole symmetric on the Fermi surface in the thermodynamic limit, as we have argued
above.

Away from the Fermi surface, the calculated quasiparticle weight shows modest particle–
hole asymmetry at the doping level considered (x � 0.13). The quasiparticle weight for
removing an electron is larger than that for adding an electron. In general, the total quasiparticle
weight decreases monotonically with momentum in all radial directions from (0, 0) in the
Brillouin zone. As can be seen from equation (7), the momentum dependence of Z+

k can
be understood from that of n(k). The calculated n(k) for the Gutzwiller projected Fermi sea
state is shown in figure 2(a). Below the Fermi surface, n(k) is a constant. Above the Fermi
surface, n(k) is an increasing function of momentum in all radial directions from (0, 0) in the
Brillouin zone. This rather unusual behaviour is characteristic of the Gutzwiller-type projected
wavefunctions, and results in the decrease of Z+

k above the Fermi surface. We note that the
non-monotonic behaviour of n(k) is related to the correlated nature of the hopping term in the
t–J model [12] and is not an artefact of the Gutzwiller projected wavefunctions5.

5 The momentum distribution function of the t–J model differs from the that of the Hubbard model by a canonical
transformation. The momentum distribution function after the canonical transformation is a monotonic function of
momentum.

7



J. Phys.: Condens. Matter 19 (2007) 016217 H-Y Yang et al

Figure 3. Doping dependence of the quasiparticle weight as calculated from the VMC method for
the Gutzwiller projected Fermi sea state. The calculation is done on an 18×18 lattice with periodic–
antiperiodic boundary condition. Shown in the figure are the results for the ten momenta along the
(0, 0)–(π,π) direction. Among the ten curves in the figure, the upper five are for momenta below
the Fermi surface and the lower five are for momenta above the Fermi surface at sufficiently low
doping (at higher doping level, a momentum originally below the Fermi surface can be transformed
into a momentum above the Fermi surface with increasing doping). Also shown in the figure (as a
bold solid line) is the prediction of the slave–boson mean-field theory (SBMFT).

The doping dependence of the quasiparticle weight is shown in figure 3. Plotted in the
figure is the result for all the ten momenta in the (0, 0)–(π, π) direction of an 18 × 18 lattice.
The quasiparticle weight predicted by the slave–boson mean-field theory (which is momentum
independent) is also shown in the figure for comparison. From the figure we see that the
quasiparticle weights for adding and removing an electron from the system both vanish near
half-filling. According to the sum rule, the local spectral weight (which is given by the mean
value of the spectral weight in the Brillouin zone) for removing an electron with a given spin
is 1−x

2 , while that for adding an electron is x . Thus at sufficiently low doping level, most of
the spectral weight in the hole side of the electron spectrum should be incoherent. Since the
particle side of the electron spectrum only contains the coherent (or quasiparticle) contribution,
the tunnelling asymmetry should be attributed to the incoherent spectral weight at sufficiently
low doping level. Another interesting feature of figure 3 is that the quasiparticle weight for
removing an electron decreases more slowly than that for adding an electron does. At the same
time, the quasiparticle weight calculated from the Gutzwiller projected wavefunction is larger
than that predicted by the SBMFT. These points will be discussed in more detail below.

Now let us compare our results with the predictions of other theories. In the slave–boson
mean-field theory, the quasiparticle weight is reduced from the non-interacting value by a
constant factor x (the hole density) but will still be particle–hole symmetric: Z+

k = xu2
k and

Z−
k = xv2

k . At the same time, the SBMFT predicts that the electron spectrum in the particle
side is totally coherent, while that in the hole side contains both coherent and incoherent
contributions. Thus, one should attribute the tunnelling asymmetry totally to the incoherent
spectral weight, which dominates the electron spectrum at sufficiently low doping level. The
quasiparticle weight calculated from the Gutzwiller projected wavefunction agrees with the
SBMFT prediction in two aspects. First, the quasiparticle weights for adding and removing
an electron both vanish near half-filling. Second, the particle side of the electron spectrum is
exhausted by the quasiparticle contribution. This implies that the tunnelling asymmetry should

8
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be attributed to the incoherent part of the electron spectrum at sufficiently low doping level, a
conclusion in agreement with the prediction of the SBMFT.

However, unlike the prediction of the SBMFT, the quasiparticle weight calculated
from the Gutzwiller projected wavefunction is particle–hole symmetric only near the Fermi
surface, rather than symmetric in the whole Brillouin zone. In particular, in the absence
of superconducting pairing, the quasiparticle weight predicted by the SBMFT reduces
to a constant x , while the quasiparticle weight calculated from the Gutzwiller projected
wavefunction is momentum dependent. As we have seen above, the calculated quasiparticle
weight for removing an electron is always larger than that for adding an electron. The difference
in the doping dependence of the quasiparticle weight predicted by these two approaches is
even more dramatic. In the slave–boson mean-field theory, the quasiparticle weight scales
linearly with x at all momenta. On the other hand, the quasiparticle weights calculated from
the Gutzwiller projected wavefunction scale with x in different ways in the particle side and the
hole side of the electron spectrum (see figure 3). More specifically, we find that the quasiparticle
weight for adding an electron scales linearly with x at sufficiently low doping. However, the
quasiparticle weight for removing an electron from the system follows approximately the

√
x

rule near half-filling. Thus the particle–hole asymmetry in the quasiparticle weight becomes
more evident in relative terms with decreasing doping [7]. We note that the particle–hole
asymmetry in the quasiparticle weight calculated from the Gutzwiller projected wavefunctions
can be understood as a result of recombination of slave particles in the SBMFT [13].

As we have mentioned above, the quasiparticle weight calculated from the Gutzwiller
projected wavefunction is larger than that predicted by the SBMFT. In the hole side of the
electron spectrum, such a difference can be understood as a result of the recombination of slave
particles in the SBMFT. In the particle side of the electron spectrum, in which the spectral
weight is exhausted by the quasiparticle contribution in both the SBMFT and the Gutzwiller
projected wavefunction approach, such a difference can be understood in terms of the sum
rule. In the SBMFT theory, the local spectral weight (which is given by the mean value of the
spectral weight in the Brillouin zone) for removing an electron with a given spin is 1−x2

2 , while
that for adding an electron is x(1+x)

2 .6 Thus for small x , the average of Z+
k predicted by SBMFT

is about one half of that calculated from the Gutzwiller projected wavefunction. We note that
the total local spectral weight predicted by the SBMFT is still the correct value 1+x

2 for electron
with a given spin.

Recently, Anderson and Ong calculated the quasiparticle weight of the Gutzwiller
projected wavefunction and arrived at a conclusion quite different from ours [3]. They
found that both the particle side and the hole side of the electron spectrum are dominated
by the quasiparticle contribution for all doping levels. According to their calculation, there
will be a jump in the total quasiparticle weight right at the Fermi surface when there is
no superconducting paring. They argued that the tunnelling asymmetry observed in the
STM experiments should be attributed to the coherent rather than incoherent part of the
electron spectrum. These differences can be attributed to the approximation used in their
calculation. They used the Gutzwiller approximation to treat the projection operator, while
no approximation is used in our calculation. This indicates that the Gutzwiller approximation,
which is useful for the estimation of ground-state expectation values, cannot be applied without
change to the study of the quasiparticle excitation above the ground state. The approximation
overestimates the coherent nature of the electron spectrum.

6 In the SBMFT, the quasiparticle weight for adding an electron is a constant x above the Fermi surface and zero
below the Fermi surface. Thus the average of Z+

k in the Brillouin zone is given by x(1+x)
2 . Here we have used the fact

that 1+x
2 of the Brillouin zone is left unoccupied at hole density x .

9
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Figure 4. VMC results for the Gutzwiller projected d-wave BCS state. The calculation is done on
an 18 × 18 lattice with 42 holes. �

t = 0.1 and μ is determined by the mean-field equation for the
electron density. (a) Quasiparticle weight in the (0, 0)–(π, π) (nodal) direction. (b) Quasiparticle
weight in the (0, 0)–(0, π) (antinodal) direction.

We now present the results for the Gutzwiller projected d-wave BCS state, which
is believed to be a good approximation for the superconducting state of the high-Tc

superconductors. The mean-field state to be projected is generated by the following BCS mean-
field Hamiltonian:

HMF = −
∑

〈i j〉,σ
(c†

iσc jσ + h.c.)− μ
∑

iσ

c†
iσ ciσ +�

∑

〈i j〉
di j(c

†
i↑c†

j↓ + c†
j↑c†

i↓ + h.c.), (21)

in which di j is the form factor for d-wave pairing on the square lattice and the sum is over
pairs of nearest-neighbouring sites. The mean-field ground state of this Hamiltonian takes the
standard BCS form

|BCS〉 =
∏

k

(uk + vkc†
k↑c†

−k↓)|0〉, (22)

in which uk =
√

1 + ξk

Ek
, vk =

√
1 − ξk

Ek
. Here ξk = −2(cos kx +cos ky)−μ, Ek =

√
ξ 2

k +�2
k ,

�k = 2�(cos kx − cos ky).
The calculated quasiparticle weight is shown in figure 4 for momenta in the (0, 0)–(π, π)

direction and the (0, 0)–(0, π) direction. The results are similar to those shown in figure 1 for
the projected Fermi sea state, except for the particle–hole mixture in the vicinity of the Fermi
surface in the antinodal direction. Figure 5 shows the momentum dependence of the momentum
distribution function n(k) and the total quasiparticle weight Z+

k + Z−
k in the whole Brillouin

zone. Again, the results are similar to those shown in figure 2 for the projected Fermi sea state.
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Figure 5. The momentum distribution function (a) and the total quasiparticle weight (b) of the
Gutzwiller projected d-wave BCS state. The parameters used in the calculation are the same as
those of figure 4.

Thus, the existence of superconducting pairing does not change our conclusions qualitatively,
only making the momentum distribution function more rounded near the Fermi surface and
causing some particle–hole mixture in the same momentum region.

Recently, it is found that the quasiparticle weight for adding an electron into the Gutzwiller
projected d-wave BCS state exhibits an interesting pocket structure around the nodal point of
the d-wave gap [6]. We find that such a pocket structure is absent in the total quasiparticle
weight, which is found to be a monotonic decreasing function of momentum in all radial
directions from (0, 0). To clarify the situation, we plot in figure 6 the momentum dependence
of Z+

k and Z−
k separately in the Brillouin zone. As shown in the figure, Z+

k is a non-monotonic
function of momentum and it exhibits well-defined pocket structure around the nodal point
of the d-wave gap. More specifically, in the radial direction from (0, 0), Z+

k is an increasing
function of momentum below a momentum near the Fermi surface, but then it decreases with
further increase of momentum. On the other hand, Z−

k is a monotonic function of momentum
in all radial directions from (0, 0) and the pocket structure found in Z+

k is totally absent.
The pocket structure in Z+

k can be understood in terms of the momentum dependence of
n(k). According to equation (7), the pocket in Z+

k corresponds to a similar pocket structure in
n(k) around the nodal point of the d-wave gap. The pocket structure in n(k) can be understood
as follows. For momentum much below the Fermi surface, n(k) is a decreasing function of
momentum in the radial direction from (0, 0), as the particle–hole mixing caused by pairing
decreases with the distance from the Fermi surface, while for momentum much above the
Fermi surface, n(k) becomes an increasing function of momentum as a result of the intrinsic
momentum dependence of n(k) in the Gutzwiller projected Fermi sea state. Thus, n(k) should
be a non-monotonic function of momentum in any chosen radial direction from (0, 0) and
will reach its minimum in that direction at some momentum near the Fermi surface. As the
chosen direction of momentum rotates from the nodal direction to the antinodal direction, the
minimal value of n(k) that can be reached will also increase as a result of the increase of

11
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Figure 6. Momentum dependence of Z+
k (a) and Z−

k (b) in the Gutzwiller projected d-wave BCS
state.

the particle–hole mixing and the smearing of the Fermi surface singularity. Combining these
reasonings, one concludes that there should be a pocket structure in n(k) around the nodal
point. Since the increase of n(k) above the Fermi surface (which makes n(k) non-monotonic
in the radial direction from (0, 0)) is an intrinsic property of the t–J model and also of the
Gutzwiller projected wavefunction, we think that the pocket structure in Z+

k should be a generic
feature of the Gutzwiller projected wavefunction with a d-wave-type pairing gap. For Z−

k , the
above reasoning does not apply. Now there is no understanding on the origin of its momentum
dependence. However, since it is a monotonic function of momentum in all radial direction
from (0, 0), there can be no pocket structure in Z−

k . The same is true for the total quasiparticle
weight Z+

k + Z−
k .

5. Conclusion

In summary, we have shown that the quasiparticle weight calculated from the Gutzwiller
projected wavefunction for the cuprate superconductors is particle–hole symmetric at
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sufficiently low energy. At the same time, we have shown that the quasiparticle weight in both
the particle and the hole side of the electron spectrum vanishes at half-filling, which indicates
that the electron spectrum is dominated by the incoherent spectral weight at sufficiently low
doping level. Since the incoherent spectral weight is proved to be totally absent in the particle
side of the electron spectrum, we should attribute the majority of the observed tunnelling
asymmetry to the incoherent part of the electron spectrum. These results agree qualitatively
with the predictions of the SBMFT, but disagree with that of a Gutzwiller approximation on the
projected wavefunction. However, we have found that the quasiparticle weight calculated from
the Gutzwiller projected wavefunction does show modest particle–hole asymmetry at finite
bias, which becomes more evident in relative terms with decreasing doping. This asymmetry
is shown to be related to the difference in the doping dependence of the particle-like and the
hole-like quasiparticle weight. Both the SBMFT and the Gutzwiller approximation are not able
to predict the correct behaviour of the quasiparticle weight as a function of momentum and
doping. We have found that the pocket structure in Z+

k noticed in a previous study should be a
generic feature of the Gutzwiller projected wavefunctions with d-wave pairing gap. However,
no corresponding pocket exists in Z−

k or Z+
k + Z−

k .
From our calculation, we see that the quasiparticle behaviour predicted by the Gutzwiller

projected wavefunction follows the canonical Fermi liquid theory near the Fermi surface.
Thus, if we take the Gutzwiller projected d-wave BCS state as a reasonable description of
the superconducting state of the high-Tc superconductors, the quasiparticle excitation above
such a strongly correlated state should still be described by the standard Fermi liquid theory.
Our calculation also indicates that at sufficiently low doping level the electron spectrum is
dominated by the incoherent spectral weight. This is in agreement with the experimental
findings from ARPES measurements [15]. Thus, a full description of the low-energy physics
of the system should also include these incoherent spectral weight.
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